Multi-population genomic prediction using a multi-task Bayesian learning model
نویسندگان
چکیده
منابع مشابه
Sparse Bayesian Multi-Task Learning
We propose a new sparse Bayesian model for multi-task regression and classification. The model is able to capture correlations between tasks, or more specifically a low-rank approximation of the covariance matrix, while being sparse in the features. We introduce a general family of group sparsity inducing priors based on matrix-variate Gaussian scale mixtures. We show the amount of sparsity can...
متن کاملBayesian Multi-Task Reinforcement Learning
We consider the problem of multi-task reinforcement learning where the learner is provided with a set of tasks, for which only a small number of samples can be generated for any given policy. As the number of samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify classes of tasks with similar structure and to learn them jointly. We consider th...
متن کاملBayesian Multi-Task Reinforcement Learning
We consider the problem of multi-task reinforcement learning where the learner is provided with a set of tasks, for which only a small number of samples can be generated for any given policy. As the number of samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify classes of tasks with similar structure and to learn them jointly. We consider th...
متن کاملA Genomic Bayesian Multi-trait and Multi-environment Model
When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In this research, we propose a Bayesian ...
متن کاملConcept Classification with Bayesian Multi-task Learning
Multivariate analysis allows decoding of single trial data in individual subjects. Since different models are obtained for each subject it becomes hard to perform an analysis on the group level. We introduce a new algorithm for Bayesian multi-task learning which imposes a coupling between single-subject models. Using the CMU fMRI dataset it is shown that the algorithm can be used for concept cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genetics
سال: 2014
ISSN: 1471-2156
DOI: 10.1186/1471-2156-15-53